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Abstract—Heavy-duty engine manufacturers must comply with 

challenging and more stringent emission and greenhouse gas 

(GHG) regulations. Predicting engine emission behavior in 

system-level models with reasonable accuracy is advantageous 

for engine and powertrain development. Machine learning 

(ML) models are promising alongside 3D physics-based and 

one-dimensional models. In this study, five different ML 

models are trained using experimental engine data for emission 

prediction of methane (CH4) and nitrogen oxides (NOx). The 

models are compared with an existing phenomenological 

engine model (GT-Power). The ML models include linear 

regression, Ridge regression, Support Vector Machine (SVM), 

Random Forest (RF), and Extreme Gradient Boosting 

(XGBoost). The results show that the RF model outperforms 

other models and a one-dimensional model regarding NOx 

emission prediction. The results of RF NOx and CH4 emission 

prediction in the test set fit with 80% accuracy (±20 error 

margin). Also, 95% of test data points have less than 10% error 

compared to real experimental data. 

Keywords-Natural gas engine; Methane emissions; Nitrogen 

oxide emissions, one-dimensional simulation, Machine learning, 

Ridge, SVM, Random Forest, XGBoost 

I.  INTRODUCTION  

Road freight transport (long-hauling) is the backbone of 
European trade, generating more than €334 billion turnover and 
providing jobs for 3.2 million Europeans [1]. In North America, 
trucks are responsible for 66% of the trade between the US, 
Canada, and Mexico. Tractor-trailers (class 8 commercial 
trucks) emit a significant part of greenhouse gases (GHGs) and 
nitrogen oxide (NOx) emissions, although this class forms a 
small part of commercial trucks. For example, class-8 trucks 
form 9% of the commercial vehicles fleet in the US but emit 
almost half of the NOx and GHGs [2]. Decarbonization in 
commercial vehicles and heavy-duty fleets is generally driven 
by stringent carbon dioxide (CO2) regulations. In this regard, 
different studies focus on efficiency improvements of 
commercial vehicles in three parts: engine, vehicle, and 

powertrain. Also, more reduction can be achieved if the 
technology is combined with low-carbon fuels such as natural 
gas. In fact, alternative fuels, such as natural gas, can provide a 
short-term solution to reduce GHGs. For example, pilot-ignited 
direct injection of natural gas engines, which use a small amount 
of diesel for ignition, offer diesel-like efficiency and 
performance but 15-20% lower GHGs. Evaluation tools play an 
important role in predicting the emission behavior associated 
with different technologies. Predicting emissions with 
reasonable accuracy leads to assessing strategies for engine 
emission enhancement, after-treatment development, and 
compliance with the most recent emission regulations. This 
study aims to utilize different ML regressors as predictive 
models to estimate the methane (CH4) and NOx emissions of a 
natural gas heavy-duty engine. Moreover, this study compares 
the performance of those models and an existing one-
dimensional engine model. Finally, one of the future aims of this 
study is to use the one-dimensional model to provide the ML 
models with the required inputs (features) since the one-
dimensional model performs well in predicting those features. 
As a result, several test cycles can be examined with the ML and 
phenomenological model without the need for experimental 
tests. 

Physics-based models have been widely used to model 
engine combustion and emission behavior [3], [4]. Detailed 3D 
simulation models using physical insight can reproduce physical 
phenomena and model the engine. However, the main drawback 
of 3D CFD is the high computational cost, which makes them 
impractical in model-based control and calibration systems. 
Also, 1D simulation tools can reasonably predict engine 
performance, but they are less accurate in complex emission 
modelling. NOx emissions are very sensitive to the maximum 
cylinder temperature. However, the 1D tool considers two 
temperature zone for the calibration process. In particular, as 
they do not have a spatial resolution of temperature or 
concentration fields, accurate prediction of partial combustion 
byproduct emissions and unburned fuel can be challenging, 
especially in non-premixed combustion. On the other hand, 
predicting engine emissions with ML regression models with 
respect to engine operating conditions (different features) would 
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be very helpful, especially once they are combined with 
simulation models. The benefits include lowering computation 
costs and increasing the applicability of the models in real-time 
control systems.  

Recently, ML models and their diverse applications in 
engine development and calibration/control have received much 
interest. A comprehensive review showed that when applied 
appropriately, ML could be a powerful tool in engine modelling, 
diagnostics, control, and optimization [5]. The authors suggested 
grey-box models as a good solution that combines the benefits 
of ML-based and physics-based models simultaneously. Some 
studies also focused on ML applications to predict emissions in 
real-world conditions for diesel vehicles. Cornec et al. [6] used 
a clustering technique to categorize 70 diesel vehicles based on 
their emission behavior. Then, they applied non-linear 
regression and a neural network multi-layer perceptron (MLP) 
to predict NOx emissions; relative errors in both models are less 
than 20%. Jiaqiang et al. [7] utilized a deep learning 
differentiation model after reducing the noise in data using 
Singular Spectrum Analysis (SSA). They used GRU (Gated 
Recurrent Unit) to complete high-frequency sequences and the 
Support Vector Regressor (SVR) for low—frequency segments. 
The results showed that the combined approach could predict the 
NOx emissions better than a single model. Another study 
showed the ability of SVR and Gaussian process regression 
(GPR) 's ability to predict NOx, CO2, and fuel consumption in 
real-world conditions [8]. SVM capability in emission 
prediction is also studied in similar papers; Norouzi et al. 
inspected the SVM method to predict engine-out NOx emissions 
in a diesel engine. SVM contributed to emission prediction, 
which was finally embedded in a control-oriented model for 
NOx control and reduction [9]. SVM benefit in NOx prediction 
is also shown in another similar paper by Ramezani et al. [10].  

Although some studies focus on implementing ML models 
for emission prediction in diesel engines, such work is rare in 
heavy-duty natural gas (NG) engines. As a result, this study tries 
to address this knowledge gap by testing different ML models 
for NOx and CH4 emission prediction in a heavy-duty natural 
gas engine. For NOx emissions, a separate phenomenological 
one-dimensional engine model had been previously developed 
in GT-Power. The NOx prediction capability of the ML model 
is compared to that of the calibrated phenomenological 
combustion model. The NOx prediction in the 1-D model is 
limited by the two-zone combustion model, which is less 
accurate over some operating conditions. The ML model has the 
potential to increase the NOx prediction accuracy under steady 
and transient operating conditions. 

II. METHODOLOGY 

A. Experimental setup 

In this study, a 13 L NG heavy-duty engine is used for 
experimental testing and collecting the engine-out CH4 and NOx 
emissions. The detailed specification of the engine is written in 
Table I. The engine is diesel-pilot natural gas, which means only 
a tiny amount of diesel is injected to prepare the chamber for the 
main natural gas fuel injection. The experimental engine data 
was collected by the industrial partner on a multi-cylinder 

research engine supporting their technology development 
activities. 

TABLE I.  Engine Specifications 

Engine configuration Inline six 

Advertised power, HP 455 

Peak torque, N.m@ rpm 2400@ 1050 

Injection system Pilot diesel, main natural gas 
injection 

Aspiration Turbocharged 

Displacement, L 12.8 

Compression ratio 17:1 

Bore × stroke, mm × mm 131 × 158 

After-treatment systems DOC/ DPF/ SCR/ ASC 

 

Data was collected at a 0.1 s frequency and included intake 
and exhaust pressure, temperature and flow measurements, and 
accurate measurement of fuel flow (NG and diesel). Emissions 
were measured using an AVL emissions bench measuring 
undiluted engine-out emissions (i.e., before the after-treatment 
system).  

B. Test cycles 

As shown in Fig. 1, world harmonized transient cycle 
(WHTC) is more transient with more fluctuations, while world 
harmonized stationary cycle (WHSC) has some steady modes 
and 20-sec ramps. Combining these two cycles ensures that the 
collected data represents the engine's real operation since the 
data obtained from these two tests covers the main engine 
operation map. In each second of the cycle, the speed is set in 
the engine dyno, while air and fuel rate are adjusted to meet the 
load (torque) demand. In the meanwhile, emissions are 
measured using a gas analyzer. The main collected engine 
parameters are engine speed, engine torque, diesel fuel flow, 
natural gas fuel flow, air flow rate, and exhaust gas temperature 
after the turbocharger; these six parameters will form the ML 
input features. 

III. GRAY-BOX MODEL 

As mentioned in the previous section, six features are 
selected as the ML model inputs. There were two main reasons 
for feature selection; 1- physical understanding of the model 
because it is known that these features contribute more to NOx 
and CH4 formation. 2. The other important reason for selecting 
these features is that the one-dimensional model performs well 
in predicting these features (95% accuracy), and one of the main 
future aims of this study is to feed the ML models with the one-
dimensional model, instead of experimental tests. The GT-
power model is built on experimental data using genetic 
algorithm (GA) optimization (the details of the steps for building 
that model are out of this paper’s scope). However, the long-term 
idea is to use the engine plant model built in GT-Power to 
provide input parameter values for the ML model.  

IV. MACHINE LEARNING WORKFLOW 

Fig. 2 shows the flowchart for training different machine 
learning models. After collecting the data, cleaning, scaling, 
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and stratified sampling, different models are selected to be 
trained. 

  

(a) 

 

(b) 

Figure 1. Engine cycles tested over engine dyno; a) WHTC, b) WHSC 

A. Data cleaning and scaling 

After completing the tests, the data is collected at a 10 Hz 
frequency. The data then is down-sampled to 1Hz frequency. 
Data with negative torque values are removed from the collected 
data since these points do not significantly contribute to the total 
emissions. In this way, 23% of the original data is excluded from 
the study. The remaining data are divided into training and 
testing sets with a random sampling method. Before feeding the 
data to the ML models, the data must be scaled since the range 
of different features is completely different. Scaling in this study 
is performed using standardization. Standardization does not 
limit the data within a specific range and is much less affected 
by the outliers. 

 

 

 

 

 

 

 
 

 

 
Figure 2. Different steps in this study for training the models 

B. Stratified sampling 

After cleaning the data, the stratified sampling method splits 
the data to train and test sets. 10% of the cleaned data is allocated 
to the test set (275 data points), while 90% is to the train (and 

validation) set (2484 data points). It should be noted that 
stratified sampling is done with regard to the most significant 
feature of each label. For example, as shown in Table II for CH4, 
this emission correlates well with engine speed. As a result, a 
stratified sampling process of features has been performed by 
categorizing engine speed in different bins. 

C. K-fold cross-validation 

K-fold cross-validation is implemented for the models to 
initialize them and to have an overview of the different models’ 
performance. 20-fold cross-validation is performed in this study 
for all the involved models. In each iteration, the K-fold 
algorithm chooses one group as a fold, trains a model on the rest 
of the groups (out of the fold), and assesses it on the fold set [12]. 

D. Grid search 

Hyperparameters such as tolerated error, regularization 
parameters, and iteration stop criteria significantly impact the 
model performance. The implemented models and their 
hyperparameters are introduced in the next section. The grid 
search technique tries all the possible hyperparameter 
combinations within a given range to find the best 
hyperparameters, leading to the minimum error [11]. In this 
study, 30-fold cross-validation is performed during the grid 
search algorithm which creates reasonable combinations of 
hyperparameters and training set. 

Table II.   Correlation matrix for CH4 regarding different features 

V. MACHINE LEARNING METHODS 

This section introduces the different machine learning 
methods, their loss (utility) functions, and the associated 
hyperparameters. 

A. Linear Regression 

Linear regression model prediction is shown in (1) (and in 
the vectorized form in (2)). 

�̂� = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 + ⋯ + 𝜃𝑛𝑥𝑛 (1) 

�̂� = ℎ𝜃(𝑥) = 𝜃 ∙ 𝑋 (2) 

Where �̂� is the predicted value, n is the number of features, 
𝑥𝑖 is the ith feature value, and 𝜃𝑗 is the jth model parameter. Also, 

the mean squared error cost function for a linear regression 
model is shown in (3) [13].  

𝑀𝑆𝐸 (𝑋, ℎ𝜃) =
1

𝑚
∑(𝜃𝑇𝑋(𝑖) − 𝑦(𝑖))

2
𝑚

𝑖=1

 (3) 

B. Ridge  Regression 

Ridge regression is one of the regularized versions of linear 

regressions which adds 𝛼 ∑ 𝜃𝑖
2𝑛

𝑖=1  to the cost function. 
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Hyperparameter 𝛼  controls the amount of regularization. (4) 
shows the cost function of the Ridge regression model [13]. 

𝐽 (𝜃) = 𝑀𝑆𝐸 (𝜃) +
𝛼

2
∑ 𝜃𝑖

2

𝑛

𝑖=1

 (4) 

C. SVM 

SVM tries to find a correlation between input-output by 
solving the cost function in (5). 

𝐽 (𝜃) =
1

2
∑ 𝜃𝑖

2

𝑛

𝑖=1

+ C ∑(𝜁𝑖
+ + 𝜁𝑖

−)

𝑛

𝑖=1

 
(5) 

Where 𝜁𝑖
+ , 𝜁𝑖

− are slack variables and help to check the 
possible infeasibilities of the optimization problem. C is also the 
regularization parameter. In SVM, instead of dealing with �̂� =
ℎ𝜃(𝑥𝑖), kernel function can be replaced, �̂� = ℎ𝜃(Γ(𝑥𝑖)). This 

method is called the SVM kernel trick and uses higher 
dimensions of feature 𝑥𝑖 in �̂�. Different kernel functions exist, 
such as linear, polynomial, and Gaussian RBF [13], [14]. This 
study uses the polynomial kernel function. 

D. Random Forest 

Random Forest (RF) is an ensemble of decision trees and is 
generally trained with the bagging method, which means that 
random sampling is performed with replacement. RF includes 
all the hyperparameters of the decision tree plus those of the 
bagging classifier. RF regressor is based on a Regression Tree 
(RT), an iterative process that splits the data into different 
branches using the Classification and Regression Trees (CART) 
algorithm. The cost function of CART is as follows: 

𝐽 (𝜃) =
𝑛𝑙𝑒𝑓𝑡

𝑛
𝑀𝑆𝐸𝑙𝑒𝑓𝑡  +

𝑛𝑟𝑖𝑔ℎ𝑡

𝑛
𝑀𝑆𝐸𝑟𝑖𝑔ℎ𝑡   (6) 

Where, 

𝑀𝑆𝐸 (𝜃) =
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

 
(7) 

Also, 𝑛𝑙𝑒𝑓𝑡  and 𝑛𝑟𝑖𝑔ℎ𝑡  are the left and right branches of the 

tree. The model's regularization is performed by specifying the 
minimum number of samples at the leaf node. The maximum 
depth of the tree is another hyperparameter [13]. 

E. XGBoost 

XGBoost, or extreme gradient boosting, belongs to a family 
of boosting algorithms and uses the gradient boosting (GBM) 
framework based on a paper by Friedman [15]. It uses an 
optimized gradient-boosting algorithm through parallel 
processing, tree-pruning, handling missing values, and 
regularization to tackle overfitting. It also has several excellent 
capabilities, such as handling early stopping. Tianqi Chen 
initially introduced this package as part of the Distributed (Deep) 
Machine Learning Community (DMLC) [13], [16]. 

Table III. summarizes the models, their hyperparameters, the 
range used in grid search to fine-tune the models, and the best-
obtained hyperparameters. After finding the best 
hyperparameter for each of the models using the grid search 

method (30-fold cross-validation), the best hyperparameter is 
assigned to the model. Then the model is fitted over the training 
dataset and predicted the results for the test set.  

Table III.   Utilized models, their hyperparameters, and the applied ranges in 
the grid search technique 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VI. RESULTS 

The best model is used for predicting the test data. Fig. 3 
shows the root mean squared error (RMSE) of the models for 
CH4 and NOx, both in the training set and test set. The RMSE is 
scaled as the percentage of the maximum value of the label and 
is obtained from the best models, i.e., the tuned models with the 
best hyperparameter.  Both for CH4 and NOx, RF shows the 
minimum RMSE. Also, RMSE is higher for test sets in RF and 
XGBoost, but the difference is not considered to conclude the 
overfitting issue. Also, in RF model, RMSE is less than 4% of 
the maximum value of the targets (emission values).   

 

 

(a) 

 

(b) 

Figure 3.  Scaled RSME (% of the maximum value of the label) for a) CH4 
and b) NOx obtained from the fine-tuned models 
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Model Hyperparameters Range used in grid search Best 
hyperparameter 

Linear 
regression 

- - - 

Ridge 
regression 

𝛼 0 to 5.5 (with 0.5 step) 4.5 

SVM Kernel function 

Degree 

C 

𝜖 

Kernel= poly 

Degree= 1,2,3 

C=0.01,0.1,1,10,100 

𝜖=0.1, 0.5, 1 

Kernel= poly 

Degree= 1 

C=1 

𝜖=1 

RF 𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 

max_features  

𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟=3,10,30,100 

max_features=1,2,3,4 

𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟=100 
max_features=4 

XGBoost 𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 

max_depth 

𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟=3,10,30,100,200 

max_depth=3,5,10 

𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟=200 

max_depth=10 
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The distribution of the CH4 and NOx data set (both for train 
and test sets) against the experimental data with RF and SVM is 
depicted in Fig. 4. As seen in Fig. 4a and Fig. 4b, most data 
points fit within 80% accuracy with RF (±20% error margin).  

 

 

(a) 

 

(b) 

 

Figure 4.  Distribution of the data set against the experimental points; a) for 
CH4 -RF, b) NOx-RF 

As seen in Fig. 4c, the phenomenological model and SVM 
have comparable distribution and accuracy, while the RF model 
has a smaller error margin. Although the prediction of 
phenomenological model and SVM method overlaps in many 
data points, SVM shows better accuracy in some parts of the 
data. In other words, the phenomenological model in those parts 
underpredict, compared to SVM. Embedding such ML models 
in the simulation tool can be helpful in reducing the relative error 
to have more confidence in the prediction.  

 

 

(c) 

Figure 4.  Distribution of the data set against the experimental points for c) 
NOx-SVM 

 

Fig. 5 also shows the RF model’s error in the test set for CH4 
and NOx prediction. As seen in the error distribution in Fig 5. 
for RF, 80% to 90% of the test set has less than 10% error. Also, 
errors higher than 40% might be related to the low torque values 
that could have been removed in the data cleaning since they can 
be considered outliers. The distribution of the relative error 
which is (predicted-test label)/test label, confirms that most 
predicted points have less than 10% error. 

 

 

(a) 

 

(b) 

Figure 5.  Error distribution for the test sets, a) for CH4 and b) for NOx, 
obtained from the RF model 
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VII. SUMMARY AND CONCLUSION 

This study uses different machine learning regression models 
to predict NOx and CH4 emissions of a heavy-duty natural gas 
engine. The ML models include linear regression, ridge 
regression, SVM, RF and XGBoost. The results of different ML 
models are compared with each other. Also, ML models are 
compared with the previously developed one-dimensional 
phenomenological model. The main results are as follows: 

• The minimum RMSE values for CH4 and NOx belong 
to the RF model, followed by XGboost, Ridge, linear 
and SVM. Generally, RF yields an overall better model 
due to its greater tree diversity and the added extra 
randomness when growing trees.  

• SVM generalizes the model slightly better compared to 
RF. In other words, SVM has lower variance at the cost 
of added bias since the RMSE of the train and test sets 
are very close. Although the relative error of SVM is 
higher than RF, the significance of the added bias (error) 
in SVM depends on the target application (trade-off 
between bias and variance). Moreover, the difference in 
RMSE of train and test sets in RF is not high enough to 
conclude the overfitting issue.  

• ML models show that the accuracy of the prediction is 
within 80% (±20% relative error margin). Also, when 
the test data is inspected, most of the points in the test 
set have less than 10% error. 

• Although the hyperparameters are tuned using the grid 
search method, the assigned range can be finer. Also, 
more hyperparameters can be added to each model to 
evaluate other h perparameters’ effe t   

• The ML model can be integrated into the 1-D engine 
simulation to offer higher accuracy prediction of 
engine-out NOx and CH4 emissions compared to the 
phenomenological combustion model's predictions over 
steady state and transient operation. 
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NOMENCLATURE 

CART classification and regression trees 

GHG greenhouse gas 

GA genetic algorithm 

ML machine learning 

NG natural gas 

RF random forest 

RMSE root mean squared error 

RT regression tree 

SVM support vector machine 

XGBoost extreme gradient boosting 

WHSC world harmonized stationary cycle 

WHTC world harmonized transient cycle 
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